Lymphotoxin links microbiota and group 3 ILCs to protect against intestinal inflammation

Alexei Tumanov, MD, PhD
Disclosures

No relevant disclosures

Alexei Tumanov, MD, PhD
Ligand-receptor interactions in Lymphotoxin/TNF system

LTβ3 LTα3 LTβ2 LTα1

TNF3

Broad expression

Lymphocytes
ILC, T, B

T, DC, Macrophages

Epithelial cells
T-cell, DC, Macrophages, Epithelial cells

TNF blockers for IBD

LTβR-modulating drugs in IBD?
LT expression is increased in the colon during epithelial injury.
LT expression is increased in inflamed tissue versus uninflamed tissue of Crohn`s disease patients

p=0.01*
p=0.05*

*Sign test n=10

In collaboration with Scott Snapper. Boston Children`s Hospital
Correlation of LT^\pm and LT^2 with IL-22 expression in IBD patients

*Pearson correlation coefficient test n=23
Development of ILC lineages

Hypothesis: LT regulates ILC3s

Diefenbach et al, Immunity 2014
LTβR-dependent protection against intestinal inflammation

anti-bacterial proteins RegIIIβ,γ

pathogen *C. rodentium*

epithelial cell

IL-22R

LTβR

LT

MNP

LTβR

IL-23

IL-22

B

Nph

T

RORγt+

ILC3

Lymphoid follicle

Wang et al, Immunity, 2010
Tumanov et al, Cell Host Microbe, 2011
Kruglov et al, Science, 2013
Macho-Fernandez et al, Mucosal Immunol 2015
LT and IL-22 expression is increased in the colon during epithelial injury

How is LT expression regulated during mucosal damage?
Antibiotic treatment reduces LT and IL-22 expression

Antibiotics 1mL/daily

Antibiotics (ampicillin 1g/L, gentamicin 1g/L, metronidazole 1g/L, neomycin 1g/L, vancomycin 0.5g/L) – 1mL/day, gavage
MyD88 signaling is critical for protection during DSS-induced injury and for IL-22 production.

Graphs:
- **Body weight change %**
 - WT vs. MyD88^-/-
 - Significance: ***P < 0.001, **P < 0.01*

- **Survival, %**
 - WT vs. MyD88^-/-
 - Survival rate decreases over days.

- **IL-22/HPRT mRNA**
 - WT > MyD88^-/-
 - Significance: *P < 0.05

- **Lta mRNA/HPRT**
 - WT > MyD88^-/-
 - Significance: *P < 0.05

- **Ltb mRNA/HPRT**
 - WT > MyD88^-/-
 - Significance: **P < 0.01

Footnote:
DSS 5% for 5 days
MyD88 signaling controls IL-22 production by ILC3s

Lineage = B220, CD3, CD5, CD11b, CD11c, Gr1, Ter119

Thy1.2+Lin- gated

Wildtype

DSS 5% for 5 days

Thy1.2+Lin+ gated

MyD88-/-

0.0

0.3

2.2

0.1

IL-22

RORγt
Stimulation of LTβR signaling in MyD88−/− mice increases IL-22 production

Agonistic anti-αLTβ ab, 150 μg, day 3

ns
Hypothesis: LT signaling links signals from microbiota via MyD88 pathway to activate ILC3 for mucosal protection
Lymphotoxin signaling inhibits colitis-associated cancer development

AOM (12.5 mg/kg)

-/-

0 5 10 15 20 25 30

Number of tumors/colon

% of tumour size (diameter)

<3mm

3-5mm

>5mm

-/-

0 5 10 15 20 25 30

Number of tumors/colon

Ltb-/-

WT

Lymphotoxin signaling inhibits colitis-associated cancer development
Formation of reactive oxygen species is associated with IBD
Conclusions

- LTβR signaling in intestinal epithelial cells is essential for protection against epithelial damage

- LT regulates IL-22 production by group 3 ILCs for mucosal protection

- LT and IL-22 expression by ILC3 is regulated by MyD88 signaling

- LTβR agonists promote IL-22-mediated mucosal healing

- LTβR protects against colitis-associated cancer

- Electrochemically-based detection of reactive oxygen species in intestine using biosensors for diagnostics and understanding the mechanism of early inflammation
Collaborators

Trudeau Institute

Ekaterina Koroleva
Wayne Muraoka
Ekaterina Gubernatorova
Sydney Halperin

Scott Snapper, Boston Children`s Hospital
Yang-Xin Fu, University of Chicago

Finding

Crohn`s and Colitis Foundaiton
Trudeau Institute